The Application of the Cognitive Dimension
Framework for Notations as an Instrument
for the Usability Analysis of an Introductory
Programming Tool

Charmain Cilliers
André Calitz
Jéan Greyling

1. Introduction

In recent years, South African tertiary education institutions have
experienced increasing pressure from national and provincial govern-
ment to improve student throughput rates. The consequent expecta-
tions of higher throughput rates in introductory programming courses
have resulted in the identification and investigation of effective meth-
ods and strategies that assist students in overcoming difficulties ex-
perienced with computer programming.

A successful learning environment for introductory programming
students has been described as satisfying the following constraints
(Brusilovsky et al. 1994):

e the learning environment should support a notation that con-
sists of a small, simple subset of the programming constructs gener-
ally available in a programming notation;

e the visual appearance of the program structure should en-
able an introductory programming student to comprehend the seman-
tics of the programming constructs supported; and

543
Alternation 12.1b (2005) 543-576 ISSN 1023-1757

Charmain Cilliers, André Calitz & Jéan Greyling

e the environment should shield introductory programming
students from misinterpretations and misunderstandings.

The programming environment most commonly used by students
of introductory programming courses is categorised as being a com-
mercial programming environment, examples being Delphi™ Enter-
prise and Visual Studio (De Raadt ef al 2002). Commercial pro-
gramming environments typically support textual programming nota-
tions and not the alternative visual programming notations.

Further, commercial programming environments have been partly
blamed for the fact that introductory programming courses are often
perceived by students as being difficult (Hilburn 1993; Calloni &
Bagert 1997, Warren 2000). Commercial programming environments
have also typically been designed for use by experienced programmers
who are developing large programs (Ziegler & Crews 1999). The de-
bugging tools supported by the traditional programming environments
are complex to initiate and use and are at times by choice avoided by

- more advanced programmers. These kinds of tools are thus inappro-
_ priate for use by students of introductory programming courses.

Iconic programming notations, a subset of visual programming
languages, have been proposed as an alternative programming notation
~ specifically aimed at introductory programming students (Burnett &
~ Baker 1994; Calloni & Bagert 1994, 1995, 1997). An iconic pro-
 gramming notation is one in which each visual sentence is a spatial ar-
- rangement of icons, with each icon having a distinct meaning (Chang
_et al. 1994). Iconic programming notations attempt to simplify the
- programming task by reducing the level of precision and the incidence
= of manual typing typical of textual programming notations (Blackwell
- 1996).

= In response to the challenge of increasing throughput in introduc-
_tory programming courses, the Department of Computer Science and
~ Information Systems (CS&IS) at the Nelson Mandela Metropolitan
- University (the former University of Port Elizabeth (UPE)) identified
~ the need for the development of an experimental iconic programming

544

Applying the Cognitive Dimension Framework in Introductory Programming

notation, B# (Brown 2001; Thomas 2002; Cilliers et al. 2003; Yeh
2003; Greyling ef al. 2004). B# was deliberately designed to be a
short term visual programming notation providing initial technological
support in the learning environment of an introductory programming
course.

One factor that has a bearing on the success of B# as technological
support in the leaming environment of an introductory programming
course is the level of usability supported. The usability of computer
software is typically measured in terms of the way that users interact
with the software package. A well known technique that is often used
in the measurement of usability is Nielsen’s ten usability heuristics
(Nielsen 1994b). An alternative technique is that of the cognitive di-
mensions framework for notations (Green & Petre 1996). The latter
technique consists of fourteen individual cognitive dimensions and is
primarily aimed at measuring the usability of programming tools.

This paper reports on an investigation into the usability of B#
within the context of B# being classified as a successful learning envi-
ronment, as attributed earlier to Brusilovsky (1994). The criteria used
in the usability analysis of B# are a set of usability criteria for pro-
gramming tools known as the cognitive dimensions framework for no-
tations. The cognitive dimensions framework is used to assess the us-
ability of B# at two levels, namely at the software design and student
programmer levels. The criteria used in the usability assessment devi-
ates slightly from Nielsen’s well documented and familiar usability
principles as defined by the Heuristic Evaluation Usability Engineer-
ing method.

The paper proposes a mapping that illustrates the correspondence
of the fourteen cognitive dimensions to Nielsen’s ten heuristics.
Thereafter, each cognitive dimension is individually discussed in terms
of an assessment from a design perspective of the way in which B#
supports it. A quantitative and qualitative data analysis of a cognitive
dimension questionnaire administered to students of an introductory
programming course using B# follows. The investigation concludes

545

Charmain Cilliers, André Calitz & Jéan Greyling

that B# provides an integrated visual environment that attempts to en-
hance the learning experience of the introductory programming course
student by supporting the cognitive dimensions of notation framework
for programming languages, with a view to ultimately increase the
throughput in introductory programming courses.

2.Background

Transformations in the South African political and educational
scenario over the past few years have resulted in increasing pressure
from national and provincial government to improve student through-
put rates at national tertiary institutions (Department of Education
2001). The problem of sustaining recommended satisfactory through-
put rates in tertiary level courses is further compounded by the fact
that currently larger numbers of under-prepared students are entering
South African tertiary education institutions (Warren 2001; Monare
2004). The resulting higher incidence of under-prepared students in
-South African tertiary education institutions has a particular signifi-
- cance for introductory programming courses which rely heavily on the
 use of technological tools as components of the teaching model. The
~ prevalence of technologically under-prepared students in introductory
- programming courses consequently impacts on the group profile of the
- students and overall throughput rate of these courses.

: Maintaining satisfactory group and individual performance rates in
* introductory programming courses is not constrained to South African
- tertiary education institutions. The sustaining of acceptable levels of
~'performance remains an issue that is constantly being addressed by ter-
- tiary education institutions worldwide (Lister & Leaney 2003). Ac-
- knowledged as being of great importance in efforts to elevate the
- throughput rate in an introductory programming course at tertiary level
are effective methods and strategies that assist students to overcome
* difficulties associated with computer programming (Carbone et al.
= 2001).

546

Applying the Cognitive Dimension Framework in Introductory Programming

Typical difficulties experienced by students in introductory pro-
gramming courses include deficiencies in problem-solving strategies,
misconceptions related to programming notation constructs and the use
of traditional programming environments (Studer et al. 1995; Proulx et
al. 1996; Deek 1999; AC Nielsen Research Services 2000; McCracken
et al. 2001; Satratzemi et al. 2001). The resulting increased demands
on lecturing and computing resources as a consequence of attempts to
address these difficulties creates an urgent need for methods to raise
the successful completion percentage of candidates of already over-
subscribed introductory programming courses without reducing the
quality of the course (UCAS 2000; Boyle et al. 2002).

One approach to this problem is the modification of the introduc-
tory programming course teaching model (Wilson & Braun 1985; Aus-
tin 1987). This strategy incorporates the modification of course pres-
entation techniques to support students at a technological level. One
such type of technological support is a class of programming lan-
guages known as visual programming languages, of which iconic pro-
gramming notations is a category.

International quantitative research in the use of an iconic pro-
gramming language to encourage satisfactory performance achieve-
ment in introductory programming students has prompted related re-
search at UPE (Calloni & Bagert 1994, 1995, 1997). An iconic pro-
gramming notation, B#, has consequently been developed in the De-
partment of CS&IS at UPE for use as the technological support in the
learning environment of the umiversity’s introductory programming
course.

Concems exist as to the cost/benefit ratios when using technologi-
cal support in learning environments, specifically regarding the main-
tenance of the balance between learning about the supporting software
and learning about the content contained therein (Rader et al. 1998). It
has been observed by numerous researchers that implementation issues
evident in the software provided by traditional commercial textual
programming environments can distract students of introductory pro-

547

Charmain Cilliers, André Calitz & Jéan Greyling

gramming courses so that they do not comprehend the programming
abstractions required for the correct implementation thereof (Reek
1995, Lidtke & Zhou 1998; Ziegler & Crews 1999; Proulx 2000; War-
ren 2000, 2001).

Although conventional textual programming environments con-
currently display many programming constructs on the screen, they
tend to under-determine the student by providing no guidance as to the
textual symbols required to be entered, resulting in a large gap be-
tween the plan of the desired program solution and the supported pro-
gramming notation (LaLiberte 1994; Wright & Cockburn 2000). The
student is thus forced to provide precisely correct notation syntax be-
fore receiving any response to the solution plan and implementation
thereof (Crews & Ziegler 1998). Further, the lack of sufficient visual
feedback in the use of such programming tools makes the comprehen-
sion of notation semantics more difficult for a student (Satratzemi et
al. 2001). Features of conventional programming development envi-
. ronments include complex hierarchical menu structures and intricate
- user interfaces. These properties are often experienced by students as
_ distractions from the task of programming (Reek 1995; Lidtke & Zhou
— 1998, Ziegler & Crews 1999, Proulx 2000; Warren 2000, 2001).

Important factors to consider when making a choice of program-
© ming notation for use by students of introductory programming
- courses is how easily they will learn the chosen notation, the existence
- of any notation features that might interfere with the understanding of
- the fundamental programming concepts, and any notation features that
 ease the transformation of the beginner programmer to one who is
- competent (Dingle & Zander 2001).

Against the background described, the criteria applied in the
~ analysis of the usability of B# as technological support in the learning
* environment of an introductory programming course are presented in
© the following section.

548

Applying the Cognitive Dimension Framework in Introductory Programming

3. Usability Analysis Criteria

The usability analysis of software typically deals with the analysis
of the way in which users interact with computer software. One famil-
iar and experimentally verified technique is that of the application of
the ten usability heuristics presented by Nielsen (1993; 1994a; 1994b).
The application of Nielsen’s usability heuristics are typically restricted
to deal with user interfaces.

An evaluation technique proposed specifically for visual pro-
gramming language notations and their associated development envi-
ronments is that of the cognitive dimensions framework for notations
(Green & Petre 1996). The cogmtive dimensions framework focuses
on the actions and procedures being performed by a programmer while
using a programming notation and its associated environment.

Each of the two sets of usability criteria is individually overviewed
in this section. The section concludes with a discussion on how the
two techniques presented compare with one another.

3.1. Nielsen’s Heuristics

Nielsen’s usability heuristics, listed and defined in Table 1, deal
with the user interfaces of software systems. The heuristics have,
however, recently been applied to conventional textual programming
environments in the context of the interaction of student programmers
with a computer (Warren 2003).

The application of the technique to conventional textual program-
ming environments provides insight into the problems that student pro-
grammers experience with traditional commercial textual program-
ming notations and development environments.

549

Charmain Cilliers, André Calitz & Jéan Greyling

Heuristic Description
N1: Visibility of sys- | The system should always keep users informed about what is
tem status going on through appropriate feedback within reasonable time.

N2: Match between
system and the real
world

The system should speak the users’ language rather than sys-
tem-oriented terms.

N3: User control and
freedom

The system should clearly assist users in exiting from an unde-
sired state.

N4: Consistency and
standards

Users should not have to wonder whether different words, situa-
tions or actions mean the same thing.

NS: Error prevention

Even better than good error messages is a design which pre-
vents a problem from occurming in the first place.

N6: Recognition
rather than recall

The user should not have to remember information from one
part of the dialogue to another.

N7: Flexibility and
efficiency of use

The systern should cater to both inexperienced and experienced
users.)

N8: Aesthetic and
minimalist design

Every extra unit of information competes with the relevant units
of information and diminishes their relative visibility.

-N9: Help users rec-
Lognise, diagnose
“and recover from er-
Lrors

Error messages should be expressed in plain language (no
codes), precisely indicate the problem, and constructively sug-
gest a solution.

1N10: Help and
-documentation

Even though it is better if the system can be used without
documentation, it may be necessary o provide help and docu-
mentation. Any such information should be easy to search, fo-
cussed on the user's task, list concrete steps to be caried out,
and not be too large.

Table 1: Nielsen's Ten Usability Heuristics

. Warren (2003) concludes that conventional textual programming
-notations like C-++, C#, Java, Delphi and Visual Basic set in their re-
“spective development environments are large intricate systems that fail
“to satisfy the majority of Nielsen’s usability heuristics to some level.
- According to Warren, the specific usability heuristics not satisfied by
~conventional textual programming notations and their associated de-
~ velopment environments are those listed in Table 1, with the exception

550

Applying the Cognitive Dimension Framework in Introductory Programming

of the heuristic of consistency and standards (N4) that is only partially
satisfied. In contrast, Warren’s recommendation in terms of Nielsen’s
heuristics is that the use of spreadsheet software followed by a script-
ing language such as JavaScript, together with an HTML editor with
integrated browser capabilities as the technological support in the
learning environment of an introductory programming course, adheres
to the usability heuristics listed in Table | more closely.

An alternative technique for assessing the usability of a program-
ming tool, namely the cognitive dimensions framework for notations,
is discussed in the next section.

3.2, Cognitive Dimensions Framework for Notations

The cognitive dimensions framework for notations is an evaluation
technique for interactive devices and non-interactive notations that has
evolved over the past 15 years (Green 1989; Green & Petre 1996;
Green & Blackwell 1998). This technique is task-specific and concen-
trates on the processes and activities being performed by programmers
while using the software system rather than on the software deliverable
itself.

In the case of the iconic programming notation B#, cognitive di-
mensions are the descriptions of the system-student relationship and
are intended as a measurement instrument at a high level of abstrac-
tion. The cognitive dimensions framework for notations was initially
intended for use during the early stages of the design process of a pro-
gramming tool due to its structural assessment characteristic.

The definitions of the individual components of the cognitive di-
mensions framework appear in Table 2 (Green & Petre 1996, Black-
well & Green 2000). The framework has also been used in the design
of questionnaires aimed at programmers to assess the usability of the
programming tools used (Kadoda et al. 1999; Blackwell & Green
2000). The cognitive dimensions framework emphasises that pro-
gramming tools include both a notation and a development environ-
ment, and that usability is a function of the two.

551

Charmain Cilliers, André Calitz & Jéan Greyling

 Cognitive Dimension | Description
CD1: Abstraction man- | The system provides facilities for the definition of new con-
| agement cepts or constructs within the notation.

CD2: Closeness of
mapping

The notation supported by the system closely resemblances
the program solution being described.

CD3: Consistency

The system supports similarity in different parts of the nota-
tion that have like meanings.

CD4: Diffuseness

The system supports brevity in the description of solutions
within the provided notation.

CD§: Eror-proneness

The system permits the making of unnecessary mistakes
which are a hindrance fo the programming task.

CD6: Hard mental op-
erations

The system has features that require a large amount of
mental effort o use effectively.

CD7: Hidden dependen-
cies

The system enforces consistency and a high level of visibil-
ity between closely related components of the notation.

CD8: Premature com-
mitment

The syslem places a restriction on the ordering of subtasks
within the programming task.

CDB: Progressive

The system supports the execution of partially completed

_ evaluation versions of the solution.
+CD10: Role- The system supporis the easy identification of constructs
. expressiveness within a program solution,

CD11: Secondary nota-
“Ttion

The system supports annotations that convey meaning to
the sltudent.

- CD12: Viscosity

The system supports the simplification of modifications to
existing programs.

| CD13: Visibility and jux-
 taposbilty

The system supports the easy location of the various paris
of the notation, and if corresponding representations are re-
quired to be compared, then the student is able to view
them at the same time, preferably alongside one another.

CD14: Provisionality

The system supports the interactive modification of a solu-
tion and permits the determination of the effect of program-
ming decisions.

Table 2: Cognitive Dimensions Framework Components

Since both Nielsen’s heuristics and the cognitive dimensions for

notations framework are usability analysis techniques used in the as-

352 sessment of programming tools, a mapping of the 14 cognitive dimen-
- sions to Nielsen’s 10 usability heuristics is discussed next.

552

Applying the Cognitive Dimension Framework in Introductory Programming

3.3. Egquivalence of Usability Analysis Criteria

Both Nielsen’s usability heuristics and the cognitive dimensions
framework have been used by various researchers as measurement in-
struments of the usability of programming tools (Kadoda et al. 1999;
Blackwell & Green 2000; Warren 2003). Table 3 illustrates the corre-
spondence and overlap of the two sets of usability analysis criteria.

Nielsen's Usability Heuristic Cogpitive Dimension

CD7: Hidden dependencies

CD9: Progressive evaluation

N1: Visibility of system status CD11: Secondary notation

CD13: Visibility and juxtaposibility
CD14: Provisionality

CD2: Closeness of mapping

N2: Match between system and the
real world

CD1: Abstraction management
CD6: Hard mental operations
CD8: Premature commitment
CD38: Progressive evaluation
CD11: Secondary notation

N3: User control and freedom

CD12: Viscosity
N4: Consistency and standards CD3: Consistency
N5: Error prevention CD5: Error-proneness

N6: Recognition rather than recall | CD10: Role-expressiveness
‘ CD1: Abstraction management
CD6: Hard mental operations

N7: Flexibility and efficiency of use CD8: Premature commitment

CD12: Viscosity
NB8: Aesthetic and minimalist de- .
sign CD4: Diffuseness
NS: Help users recognise, diag- .
nose and recover from efors CD5: Error-proneness
N10: Help and documentation CD5: Error-proneness
Table 3: Correspondence between Nielsen's Usability Heuristics and the Cogpnitive Di-

mensions Framework

553

Charmain Cilliers, André Calitz & Jéan Greyling

All 14 cognitive dimensions (CD1 - CD14) can be equated to
Nielsen’s 10 usability heuristics (N1 — N10) based on the definitions
of each technique’s components as discussed previously. In many in-
stances, the same cognitive dimension is mapped to multiple heuris-
tics, and the same heuristic is mapped to multiple cognitive dimen-
SI0DS.

As mentioned previously, for the purposes of the study reported on
in this paper, the usability of B# is evaluated according to the cogni-
tive dimensions framework. Since this measurement instrument is
task-specific, the tasks relevant to creating a program solution in B#
are thus the focus of the following section.

4.Development of a Program Solution in B#

In order for a program solution to be developed using B#, the stu-
dent is first required to either locate and identify an existing program
solution, or provide identification for a new program solution. There-

~after, the B# program is constructed in the form of a control-flow solu-
“tion that closely resembles that of a flowchart. Once this has been
~completed, the student may execute and debug the program solution
~and save it for future use. An overview of the task model for develop-
~ing a program solution in B# is shown in Figure 1.

Each B# program solution is constructed in the form of a flow-
“chart of icons, with each icon representing a distinct programming
"construct. The flowchart is a top-down single-sequence structure of
“icons connected by lines, forming a box-and-line graph which is typi-
;fcal of visual programming languages (Green & Petre 1996; Materson
& Meyer 2001). The student selects an appropriate icon from the icon
_palette and drags-and-drops it in the correct position on the flowchart.
~An example of a program solution in the B# programming notation
~and associated development environment is illustrated by Figure 2.
“The flowchart representation of the program solution appears in the
_left hand pane of the window.

554

Applying the Cognitive Dimension Framework in Introductory Programming

On attachment of the icon to the flowchart, a dialogue box is
opened to guide the student in the specification of the properties re-
quired by the particular programming construct being manipulated.
Figure 3 illustrates an example of a programming construct dialogue.
The dialogue box in Figure 3 is that applicable to the counter iteration
programming construct, which typically corresponds to a FOR textual
programming statement. The student is required and guided to cor-
rectly complete the dialogue before an icon can be successfully at-
tached to the flowchart representation of the programming construct.

Develop program so-
lution
Create new / open Execute and debug
existing program solu- program solution
ton
/ e
Construct congol-flow Save :f:ﬁozmm
flowchan
Select appropriate Attach p ing Complete program-
programiming con- construct icon to ming construct din-
struct icon flowchart logue

Figure 1: Task Model for the Development of a Program Solution in B#

Icons can be edited, repositioned and removed from the flowchart
representation of the program solution. During the construction of a
flowchart program solution, B# automatically and immediately dis-
plays the correct textual counterpart for the program solution. An ex-
ample of this display is evident in the bottom right hand pane of the
window illustrated in Figure 2. Figure | illustrates that once a B# pro-
gram solution has been constructed, the student may test and debug it.
Execution of program solutions is supported in two ways. The first
technique is one whereby only the output from the program solution is
displayed. The second technique permits the student to control the

555

Charmain Cilliers, André Calitz & Jéan Greyling

speed of the execution of the program solution. In this way, the stu-
dent can trace the execution of the program solution, programming
construct by programming construct.

W

[N Y

| [Romea oo budens Fosch

' Wrize{'dmtax a g
Baehlnin: .
Af 3 < § thes

Wrseebal’ laval

e
ZWCE TR R
fxitsl Aeda 19 ' arend)

Thai Vi i ¥l

for | |:-[|te { do

hagin
{Loop atatements.}
ond 2

™ Conndk cioman.

Ewoue

[o] oo

Figure 3: Dialogue Box for Counter Iteration Programming Construct

556

Applying the Cognitive Dimension Framework in Introductory Programming

WYt o B b ar Paet bl abete: T
Bt IR Jeorgtod b -8 x
D@l X & .

BS Taurg Yodd 1 SetTean$d) 4y Stenfusus

Local Venisblun \Comtante o]
M | Dataypa | Vebao | tgm |
) v

axea : Real:

Teagri.®
Beated ‘Rscar o walua i
Baadlo (%) .
A€ v v 0 Sbom

) Sepnet §p Soop Trace §H Dok to Pomthart
£nzer a value §

Bricelnd lowaisrd yaduee');
L
sham
bagie
axse ™ pi T 2 * % ;
Wercol‘draa 12 ', uzesd;
. w

Figure 4: B# Tracing and Debugging Feature

As the student controls the tracing process, both the flowchart and
textual representations of the program solution are simultaneously ani-
mated. An example of the animation appears in Figure 4 in the form
of blue highlighting in each of the program solution representations.
Any changes in variable values are highlighted in the variable descrip-
tion area to focus the student’s attention on them. This area appears in
the top right hand pane of the window illustrated in Figure 4.

The following section analyses the usability of B# as an introduc-
tory programming tool in terms of the cognitive dimensions over-
viewed in Section 3, and the task model described in this section.

5. Usability Analysis of B#

The cognitive dimensions framework, as described previously, is
an evaluation technique that is task-specific and intended for use with
respect to the design process of programming tools. The framework

557

Charmain Cilliers, André Calitz & Jéan Greyling

can also be used to determine the usability of a programming tool from
the student programmers’ point of view. The following sections report
on the usability analysis of B# as a programming tool for student pro-
grammers in an introductory programming course at UPE in terms of
each of these approaches.

5.1. Design Perspective

In terms of its design, B# supports the cognitive dimension of ab-
straction management (CD1) by allowing a student to define new pro-
gramming operations using the notation provided, specifically permit-
ting the definition and use of subroutines. The cognitive dimension of
closeness of mapping (CD?2) is enforced by a notation that closely re-
sembles the solution being described. B# adopts the use of a visual
flowchart which closely mirrors the control-flow or procedural para-
digm initially required by the students in the context of UPE’s intro-
ductory programming course. An example of the visual flowchart no-
tation is illustrated in Figure 2 (shown in section 4).

= B# maximises support for the cognitive dimension of diffuseness
*(CD4) by providing a small number of powerful, non-overlapping pro-
- gramming constructs. The number of programming constructs sup-
- ported is minimised since more constructs imply more notational syn-
~<tax and unnecessary complexity which could result in a student pro-
~ grammer experiencing confusion. The programming constructs sup-
= ported by the notation of B# are shown in Table 4.

-} Construct leon Construet leon

i Assignment] Input B8
| Simple conditional & Output
} Mutiple condiional |y Postlest conditional iteration
| Counter fora - —_—

Counter iteration B Retum to calfing function
-4 Pre-test conditional itera-

. tion Procedure call :ﬁ\

—
=

Table 4: Programming Constructs supported by B#'s notation

358

Applying the Cognitive Dimension Framework in Introductory Programming

Also shown in Table 4 is the fact that the cognitive dimension of
consistency (CD3) is supported by the notation of B#. All looping or
iteration constructs (counter iteration, pre-test conditional iteration and
post-test conditional iteration) have similar metaphorical images, yet
remain visually distinct.

B# minimises the incidence of unnecessary errors which hinder
the programming task by means of its context sensitive views. This
property is evident specifically in the case of the customised dialogues
implemented for programming constructs, an example of which is il-
lustrated by Figure 3 in the previous section. Further evidence of the
prevention of unnecessary errors is the fact that B# hides from the stu-
dent all mundane syntactical issues (for example, the correct position-
ing and inclusion of semi-colons within the corresponding textual lan-
guage). In these ways the cognitive dimension of error proneness
(CD5) is minimised.

During the prototype development of B#, it was observed that the
feature of providing the facility for the construction of student defined
programming operations required the most mental effort to compre-
hend and successfully implement. Consequently, it was determined
that B# exhibited the cognitive dimension of hard mental operations
(CD6). Support for the identified offending feature was thus modified
in the most recent version of B# (Yeh 2003) in order to minimise sup-
port for the cognitive dimension of hard mental operations.

B# maximises the visibility of the inter-dependence of components
by the concurrent display of the flowchart program solution and the
corresponding syntactically correct textual version of the program so-
lution. This feature is illustrated in Figure 2 in the previous section.
In this way, B# minimises incidences of the cognitive dimension of
hidden dependencies (CD7).

An example of the manner in which B# minimises the incidence of
the cognitive dimension of premature commitment (CD8) is the way in

559

Charmain Cilliers, André Calitz & Jéan Greyling

which variables required by the program solution only need to be de-
fined as they are required. This enhances the student control and free-
dom of the programming environment. Figure 5 illustrates that the
declaration of a variable is required only after the selection and at-
tachment of the assignment programming construct has been initiated
by the student. The student is thus not required to declare variables
prior to deciding that the assignment operation is the programming
construct required to be implemented. B# does, however, provide for
a facility whereby more experienced students may pre-declare vari-
ables should they so wish. In this way, B# refrains from enforcing a
particular order of performing programming tasks during the develop-
ment of a program solution.

Any B# program solution representation (both flowchart and cor-
responding textual) is always syntactically correct and the student may
consequently execute and debug a program solution using the tracing
facility at any point during program solution construction. This fea-

ture promotes the cognitive dimension of progressive evaluation

(CD9)

d is illustrated in Figure 4 of the previous section.

5

[Ld ﬂlﬂ\ ¥ Ruwore

Eseare
& Vbl " Condant

‘) Selors, 1o byge of decies s,

weme: |

ﬁmvm: Owafype [Range BET"30
767 %
5 ! Rest Sor-Ttm L ANE WO
e | Sm— Che Sgn Chasectar T‘r..'T;"‘;r
| S Chapathars Wabsr' oy
l Boolpan Vous & Falie Trae :,':::' :‘
veus: I
— i FOa
' o } * axaa); -
oy

Figure 5: Declaration of variable required only when necessary

Applying the Cognitive Dimension Framework in Introductory Programming

The cognitive dimension of role expressiveness (CD10) is sup-
ported in B# by means of the use of distinct metaphorical icons for
each programming construct found in the flowchart representation for
a program solution. Support for the cognitive dimension of role ex-
pressiveness is illustrated by the easy visual identification of distinct
programming construct images displayed in the flowchart representa-
tion of the program solution in Figure 2 (shown in section 4).

Examples of the manner in which B# exhibits the cognitive di-
mension of secondary notation (CD11) is by means of the vertical and
horizontal arrangement of programming construct icons in relation to
one another in the flowchart representation of a program solution. A
sample of this feature is illustrated in Figure 2.

Vertical arrangement of icons in the flowchart representation of a
program solution is an indication of the flow of control, whereas hori-
zontal arrangement is an indication of mutual exclusive selection. B#
supports the cognitive dimension of secondary notation in the textual
representation of a program solution by means of signalling (or code
highlighting), also illustrated in Figure 2.

B# further treats nested programming constructs as a group and
the student, by means of a single action, can, for example, successfully
and easily reposition a group of programming constructs as a single
unit within the flowchart representation of a program solution. In this
way B# provides for the support of the simplification of modifications
to existing program solutions thereby supporting the cognitive dimen-
sion of viscosity (CD12).

Support for the cognitive dimension of visibility and juxtaposibil-
ity (CD13) is supported by B# in that the development environment
provided by B# minimises the effort required on the part of the student
to search for related information. This is evident in the way in which
B# displays corresponding representations of a program solution
alongside one other (Figure 2). B# also ensures that the student is able

561

Charmain Cilliers, André Calitz & Jéan Greyling

to manage the screen display with the minimal amount of windows.
Further, minimal effort on the part of the student is required to deter-
mine the current status of the system.

B# supports the displaying of the current status of the system by
means of context sensitive views, one example being where the user is
confronted with a blank display and is thereby encouraged to either
create a new program solution or open an existing one. Figure 6 illus-
trates this system status.

Other examples exhibited by B# in support of the cognitive di-
mension of visibility and juxtaposibility is the display of an appropri-
ate dialogue for any specific programming construct being added to
the flowchart (Figure 3 in section 4) as well as the tracing facility
which provides simultaneous animation of corresponding flowchart
and textual program solutions (Figure 4 in section 4).

Figure 6: lllustration of Initial System Status

B# provides support for the final cognitive dimension of provi-
sxonahty (CD14) by facilitating the easy repositioning of nested groups

$62

Applying the Cognitive Dimension Framework in Introductory Programming

of programming constructs represented by icons as well as by means
of the tracing facility (Figure 4).

In addition to evidence of B# support for the 14 cognitive dimen-
sions at a design level, an evaluation of the system by means of a stu-
dent questionnaire derived from the set of cognitive dimensions was
conducted, the results of the analysis thereof being discussed in the
following section,

5.2. Student Programmer Perspective

A questionnaire (Appendix A) customised and adapted from the
generic questionnaire proposed by Blackwell & Green (2000) was ad-
ministered to students using B# as technological support in an intro-
ductory programming learning environment. The aim of the survey
was to collect data for the examination and testing of the following
hypothesis for significance at the 95% percentile (o= 0.05) (Berenson
& Levine 1999):

Hy. An equal number of positive and negative responses
Jfor each cognitive dimension are received from the student
assessment of the usability of B#.

H,: An unequal number of positive and negative re-
sponses for each cognitive dimension are received from the
student assessment of the usability of B#.

The test statistic applicable to the quantitative data analysis is a
computed proportion based on the number of positive responses ob-
served for each cognitive dimension on administering the question-
naire. The statistical technique thus appropriate to the analysis of the
data collected is the ¢ -test for the homogeneity of proportions using a
contingency table to test the equality of the number of positive and
negative responses for each of the 14 cognitive dimensions as defined
in section 3. STATISTICA (StatSoft Inc. 2001) is the data analysis
tool used in the computations required for the y*-test.

563

Charmain Cilliers, André Calitz & Jéan Greyling

The cognitive dimensions questionnaire was administered to a
group of 18 (of a possible 25) introductory programming students at
UPE during 2004. The course was one of the smaller introductory
programming courses and was the only course where B# was exten-
sively and exclusively used. The subjects of the study had been using
B# as technological support in the learning environment of the intro-
ductory programming course for a period of 10 weeks. Each weekly
exposure to B# consisted of a single session of at least 75 minutes.

The portion of the questionnaire that is dedicated to the main nota-
tion of B# is designed to provide at least one numbered item relevant
to each of the 14 cognitive dimensions. The purpose of each num-
bered item is to provide the opportunity for the respondents to recog-
nise the existence of features in B# that are relevant to each cognitive
dimension in terms of the programming task performed by the stu-
dents. Table 5 maps each of the items appearing as numbered ques-
‘tions in the questionnaire in Appendix A to the appropriate cognitive
-dimension.

The cognitive dimension of abstraction management (CD1) is not
~included due to the fact that at the time of the administering of the
“questionnaire, the curriculum being followed by the introductory pro-
~gramming students had not yet progressed sufficiently to the point
‘where the students were able to effectively assess the particular fea-
“tures supported by B# that are relevant to this particular cognitive di-
-mension.

. Positive | Negative

Cognitive Dimension Question response response
number
values values |

CD2: Closeness of mapping 7 3,45 1,2
CD3: Consistency 13 3,4,5 1,2
CD4: Diffuseness 4 3,45 1,2
CD3: Error-proneness] 1,23 4,5
CD6: Hard mental operations 5 1,2,3 4 5

Applying the Cognitive Dimension Framework in Introductory Programming

CD7. Hidden dependencies 9 3,45 1,2
CD8: Premature commitment 12 1,23 4,5
CD8: Progressive evaluation 10 3,45 1.2
CD10: Role-expressiveness 8 34,5 1,2
CD11: Secondary notation 14 3,45 1,2
CD12: Viscosity 3 3,45 1,2
CD13: Visibility and juxtaposibility | 1and2 | 3, 4,5 1,2
CD14: Provisionality 11 3, 4,5 1,2

Table 5: Correspondence of Questionnaire Questions to Cognitive Dimensions

Results of the statistical analysis of the responses to each of the
numbered items in the questionnaire are presented in Table 6. The
null hypothesis is clearly rejected for 10 of the 13 cognitive dimen-
sions at the 99% level of confidence, and rejected for the remaining 3
cognitive dimensions at the 95% level of confidence. By inspection, it
can be interpreted that in the case of the majority of the cognitive di-
mensions, a significantly greater proportion of positive responses were
observed. Only in the cases of the cognitive dimensions of error-
proneness (CDS), hard mental operations (CD6) and premature com-
mitment (CD8) were a significantly greater proportion of negative re-
sponses observed.

The questionnaire administered to the students also attempts to so-
licit the respondents’ characterisation of the type of activity for which
B# is used in an introductory programming course. Qualitative analy-
sis through the technique of thematic analysis was applied to the data
collected for the purpose of this characterisation (Ely et al. 1995; Ely
et al. 1999; Dee Medley 2001).

Mumber of Positive
Cognitive Dimension obasrvations P-tust statistic pvalue
CD2: Closeness of mapping 13 20.380 0.000™
CD3: Consistency 11 9.750 0.002*
CD4: Diffuseness 12 4.000 0.046°
CD5: Error-proneness 5 5460 0.018"
CDé6: Hard mental operations 6 4.000 0.046"
CD7: Hidden dependancies 13 13.830 0.000™
CD8: Premature commitment 5 7.410 0.008™
CDY; Progressive evaluation 16 28.800 0.000™

565

Charmain Cilliers, André Calitz & Jéan Greyling

| CD10: Role-expressiveness 17 28.440 0.000"
| CD11: Secondary notation 14 16.200 0.000*
[CD1z: Viscosity 16 21.780 0.000™
‘ 17 28.440 0.000-
CD13: Visibility and juxtaposibility and and and
12 11.690 0.001*

CD14: Provisionality 16 25.080 0.000™

*a=0.05 o= 0.01

Table 6: Results of Usability Evaluation of Main Notation of B# with respect to Cognitive
Dimensions of Notaticns

Thematic analysis of the responses to this question determined that
students interpreted the main task/activity for which B# is used to be
the creation of program solutions for problems in the form of a flow-
chart. Typical responses to this question are:

“Solving problems similar to flowcharts”
“Creation of flowcharts”
“Creating programs”

The questionnaire further attempts to determine the existence of
“any problems related to the usability of B# that are not specifically ad-
~ dressed by the cognitive dimensions. Analysis of the responses deter-
- mined that the task that took the most time in B# was the reorganisa-
-~ tion and restructuring of a B# program solution. The tasks that occu-
-~ pied the least amount of time were searching for the correct program-
~ming icon to use and the unproductive experimentation of program-
- ming construct icons within program solutions.

Thematic analysis of the responses also indicated that additional
- assistance was required to be provided by B#. Typical responses in-
- dicative of this are:

- “By putting a Help function’
- “Have back going arrows like in flowcharts. Not only forward ar-
“rows”

- “Being able to indicate location of the error within the program”

566

Applying the Cognitive Dimension Framework in Introductory Programming

As a result of the quantitative and qualitative analysis of the stu-
dent programmer assessment of the usability of B#, it is noticeable that
additional system support for on-line help is required.

6. Discussion and Conclusions

The paper reported on an investigation into the usability of B#, an
iconic programming notation and development environment developed
by the Department of CS&IS at UPE, as an appropriate technological
support tool in the learning environment of an introductory program-
ming course. The results of the analysis are presented on two levels,
namely in terms of the design of B# and with respect to the experience
of students using B# to construct program solutions.

At the design level, B# is shown to positively provide support for
all 14 cognitive dimensions. Application of a mapping between the
technique of the cognitive dimensions framework for notations and
Nielsen’s heuristics implies that in satisfying the 14 cognitive dimen-
sions, B# satisfies the latter technique of Nielsen’s 10 heuristics in
their entirety.

In order to confirm the level of support for the cognitive dimen-
sions, a survey was administered to introductory programming stu-
dents using B# and the responses quantitatively and qualitatively ana-
lysed.

The analysis of the responses observed by means of the survey de-
termined that 77% of the cognitive dimensions are positively sup-
ported by B#. The analysis, however, provides evidence of usability
problems in B# that are not specifically addressed by the cognitive di-
mensions. These identified usability problems have a relationship with
the remaining 23% of cognitive dimensions not directly positively sup-
ported by B# in terms of the student assessments.

It is interesting to note that all of the cognitive dimensions as-
sessed by student programmers as not being positively supported by
B# are without exception the only questionnaire items that were nega-
tively phrased.

567

Charmain Cilliers, André Calitz & Jéan Greyling

In terms of the cognitive dimensions for notations assessment of
the usability of B#, the experimental programming notation and envi-
ronment can be classified as a successful learning environment for in-
troductory programming students for the following reasons:

e B# supports a notation that consists of a small, simple sub-
set of the programming constructs generally available in a program-
ming notation. This property is evident in B# maximising support
for the cognitive dimension of diffuseness (CD4).

o The visual appearance of B#’s program structure enables an
introductory programming student to comprehend the semantics of
the programming constructs supported. This property is evident in
B# maximising support for the cognitive dimension of closeness of
mapping (CD2).

®» DB# attempts to shield introductory programming students
- from misinterpretations and misunderstandings. This property is
* supported in B# by maximising support for the cognitive dimension
= of consistency (CD3). In spite of this observed support, there seems
~ to be evidence that the property is insufficiently supported in that
~ support for the cognitive dimension of error-proneness (CDS5) re-
¢ quires further consideration.
- Although the paper argues that in terms of support for the cogni-
-tive dimensions framework for programming languages, B# provides
‘an integrated visual environment that attempts to enhance the learning
-experience of the introductory programming course student, it is clear
‘that further research in the usability of B# is necessary.

7 . Acknowledgements

- The material contained in this paper is based upon work supported
“by the National Research Foundation (NRF) under grant number
2054293. Any opinion, findings and conclusions or recommendations

568

Applying the Cognitive Dimension Framework in Introductory Programming

expressed in this material are those of the authors and therefore the
NRF does not accept any liability in regard thereto.

References

AC Nielsen Research Services 2000. Employer Satisfaction with
Graduate Skills.

Austin, HS 1987. Predictors of Pascal Programming Achievement for
Community College Students. ACM SIGCSE Bulletin 19,1:161
- 164.

Berenson, ML & DM Levine 1999: Basic Business Statistics: Concepts
and Applications. 7™ Edition, Prentice-Hall International, Inc.

Blackwell, AF 1996. Metacognitive Theories of Visual Programming:
What do we think we are doing? Proceedings of IEEE Sympo-
sium on Visual Languages: 240 - 246.

Blackwell, AF & TRG Green 2000. A Cognitive Dimensions question-
naire optimised for users. AF Blackwell & E Bilotta (eds.)
Proceedings of 12" Annual Workshop of the Psychology of
Programming Interest Group, Corigliano Calaboro, Cosenza,
Italy: 137 - 154.

Boyle, R, J Carter & M Clark 2002. What Makes Them Succeed? En-
try, Progression and Graduation in Computer Science. Journal
of Further and Higher Education 26,1:3 - 18.

Brown, D 2001. B#: 4 Visual Programming Tool. Honours Treatise.
Department of Computer Science and Information Systems,
University of Port Elizabeth. Port Elizabeth, South Africa.

Brusilovsky, P, A Kouchnirenko, P Miller & 1 Tomek 1994. Teaching
Programming to Novices: A Review of Approaches and Tools.
Proceedings of ED-MEDIA 94-World Conference on Educa-
tional Multimedia and Hypermedia, Vancouver, British Co-
lumbia, Canada.

Bumett, MM & MJ Baker 1994. A Classification System for Visual
Programming Languages. Technical Report 93-60-14. Depart-
ment of Computer Science, Oregon State University, Corvallis.

569

Charmain Cilliers, André Calitz & Jéan Greyling

Calloni, B A & D J Bagert 1994. Iconic Programming in BACCII® vs.
Textual Programming: Which is a Better Learning Environ-
ment? ACM SIGCSE Bulletin 26,1:188 - 192.

Calloni, B A & D J Bagert 1995. Iconic Programming for Teaching the
First Year Programming Sequence

http://fie.engmg.pitt.edu/fie95/2a5/2a53/2a53 htm. Accessed on 26
September 2002.

Calloni, B A & D J Bagert 1997. Iconic Programming Proves Effective
for Teaching First Year Programming Sequence. ACM SIG-
CSE Bulletin 28,1:262 - 266.

Carbone, A, J Hurst, I Mitchell & D Gunctone 2001. Characteristics of
Programming Exercises that lead to Poor Learning Tendencies:
Part 1. ACM SIGCSE Bulletin 33,3:93 - 96.

Chang, S K, G Polese, S Orefice & M Tucci 1994. A Methodology and
Interactive Environment for Iconic Language Design. Interna-
tional Journal of Human-Computer Studies 41,5:683 - 716.

Cilliers, CB, JH Greyling & AP Calitz 2003. The Development and
Evaluation of Introductory Programming Tools. Proceedings
of 3 International Conference on Science Maths Technology
Education, East London, South Africa.

- Crews, T & U Ziegler 1998. The Flowchart Interpreter for Introductory
‘ Programming Courses. Proceedings of 28" Annual Frontiers
. in Education Conference 1: 307 - 312.
~ De Raadt, M, R Watson & M Toleman 2002. Language Trends in In-
5 troductory Programming Courses. Proceedings of Informing
Science + IT Education Joint Conference (I"'SITE): 329 - 337.

- Dee Medley, M 2001. Using qualitative research software for CS Edu-
cation Research. ACM SIGCSE Bulletin, 33,3:141 - 144.

- Deek, F P 1999. A Framework for an Automated Problem Solving and
' Program Development Environment. Transactions of the Soci-
: ety for Design and Process Science 3,3:1 - 13.

- Department of Education 2001. National Plan for Higher Education.
South African Department of Education

570

Applying the Cognitive Dimension Framework in Introductory Programming

http://education.pwv.gov.za/DoE_Sites/Higher Education/HE
Plan/section 2.htm . Accessed on 8 March 2004,

Dingle, A & C Zander 2001. Assessing the Ripple Effect of CS1 Lan-
guage Choice. Journal of Computing in Small Colleges 16,2:85
- 93.

Ely, M, M Anzul, T Friedman, D Garner & A MacCormack- Steinmetz
1995: Doing Qualitative Research: Circles within Circles. Fal-
mer Press.

Ely, M, R Vinz, M Downing & M Anzul 1999: On Writing Qualitative
Research: Living by Words. Falmer Press.

Green, T R G 1989. The Cognitive Dimensions of Notations. People
and Computers V. 443 - 460. A Sutcliffe & L. Macaulay (eds.).
Cambridge: Cambridge University Press.

Green, TRG & AF Blackwell 1998. Cognitive Dimensions of Informa-
tion Artefacts: A Tutorial
http://'www.ndirect.co.uk/~thomas.green/workStuff/Papers/
Accessed on 2 September 2002.

Green, TRG & M Petre 1996. Usability Analysis of Visual Pro-
gamming Environments: A 'Cognitive Dimensions’ Frame-
work. Journal of Visual Languages and Computing 7:131 -
174.

Greyling, JH, CB Cilliers & AP Calitz 2004. The Development and
Assessment of an Iconic Programming Tool. Submitted for
Publication in the Special el.earning Issue of the Scholarly
Journal Alternation: Knowledge Management and Technology
in Education.

Hilburn, TB 1993. A Top-Down Approach to Teaching an Introductory
Computer Science Course. ACM SIGCSE Bulletin 25,158 - 62.

Kadoda, G, R Stone & D Diaper 1999. Desirable Features of Educa-
tional Theorem Provers - A Cognitive Dimensions Viewpoint.
TRG Green, R Abdullah & P Bma (eds.) Proceedings of 11"
Annual Workshop of the Psychology of Programming Interest
Group: 18 - 23.

LaLiberte, D 1994. Visual Languages

571

Charmain Cilliers, André Calitz & Jéan Greyling

http://www hypemews.org/~liberte/computing/visual. html Ac-
cessed on 8§ August 2002.

Lidtke, D K & H H Zhou 1998. A Top-Down Collaborative Teaching
Approach to Introductory Courses in Computer Sciences. ACM
SIGCSE Bulletin 30,3:291.

Lister, R & J Leaney 2003. Introductory Programming, Criterion-
Referencing, and Bloom. Proceedings of 34" SIGCSE Techni-
cal Symposium on Computer Science Education: 143 - 147,

Materson, TF & RM Meyer 2001. SIVIL: A True Visual Programming
Language for Students. Journal of Computing in Small Col-
leges 16,4:74 - 86.

McCracken, M, V Almstrum, D Diaz, M Guzdial, D Hagan, YB-D Ko-
likant, C Laxer, L Thomas, I Utting & T Wilusz 2001. A
Multi-National, Multi-Institutional Study of Assessment of
Programming Skills of First-Year CS Students. ACM SIGCSE
Bulletin, 33,4:125 - 140.

~Monare, M 2004. Now Matric Exams Face Official Probe. Sunday
2 Times 4 January 2004.

“Nielsen, J 1993: Usability Engineering. Boston, MA: Academic Press.
“Nielsen, J 1994a. Enhancing the Explanatory Power of Usability Heu-
ristics. Proceedings of ACM CHI'94 Conference: 152 - 158.
“Nielsen, J 1994b: Heuristic Evaluation. J Nielsen & RL Mack (eds.)
Usability Inspection Methods: 25 - 62.

“Proulx, V K 2000. Programing Patterns and Design Patterns in the In-

: troductory Computer Science Course. ACM SIGCSE Bulletin

32,1:80 - 84.

~Proulx, V K, R Rasala & H Fell 1996. Foundations of Computer Sci-

ence: What are they and how do we teach them? ACM SIGCSE

Bulletin, 28,51:42 - 48.

~Rader, C, G Cherry, C Brand, A Repenning & C Lewis 1998. Design-

ing Mixed Textual and Iconic Programming Languages for
Novice Users. Proceedings of IEEE Symposium on Visual Lan-
guages: 187 - 194.

572

Applying the Cognitive Dimension Framework in Introductory Programming

Reek, MM 1995. A Top-Down Approach to Teaching Programming.
ACM SIGCSE Bulletin 27,1:6 - 9.

Satratzemi, M, V Dagdilelis & G Evagelidis 2001. A System for Pro-
gram Visualization and Problem-Solving Path Assessment of
Novice Programmers. ACM SIGCSE Bulletin 33,3:137 - 140.

StatSoft Inc. 2001. STATISTICA (Data Analysis Software System)
Ver. 6

Studer, SD, J Taylor & K Macie 1995. Youngster: A Simplified Intro-
duction to Computing: Removing the Details so that a Child
May Program. ACM SIGCSE Bulletin, 27,1:102 - 105.

Thomas, J 2002. B#: Version 2. Honours Treatise. Department of
Computer Science and Information Systems, University of Port
Elizabeth. Port Elizabeth, South Africa.

UCAS 2000. Universities and Colleges Admissions Service for the UK.

Technical Report
http://www .ucas.ac uk/figures/index htiml. Accessed on 12
February 2004.

Warren, P R 2000. Using JavaScript to Teach an Introduction to Pro-
gramming
http://saturn.cs. unp.ac. za/~peterw/JavaScript/calculator.html.
Accessed on 5 June 2003,

Warren, PR 2001. Teaching Programming Using Scripting Languages.
Journal of Computing in Small Colleges 17,2:205 - 216.
Warren, PR 2003. Learning to Program: Spreadsheets, Scripting and
HCI. Proceedings of Southern African Computer Lecturers As-

sociation (SACLA).

Wilson, JD & GF Braun 1985. Psychological Differences in University
Computer Student populations. ACM SIGCSE Bulletin
17,1:166 - 177.

Wright, T & A Cockburn 2000. Writing, Reading, Watching: A Task-
Based Analysis and Review of Learners' Programming Envi-
ronments. Proceedings of International Workshop on Ad-
vanced Learning Technologies. IEEE Computer Society Press.

573

Charmain Cilliers, André Calitz & Jéan Greyling

Yeh, CL 2003. Tracing Programs in B#. Honours Treatise. Department
of Computer Science and Information Systems, University of
Port Elizabeth. Port Elizabeth, South Africa.

Ziegler, U & T Crews 1999. An Integrated Program Development Tool
for Teaching and Learning How to Program. ACM SIGCSE
Bulletin 31,1:276 - 280.

Appendix A

This questionnaire collects your thoughts on how easy/difficult it is to
use B#. The series of questions presented encourage you to think
about the ways you used B# and whether B# helped you to do the
things that you were required to do.

Place a 1 next fo the task that took the most time in

B#, a 2 next to the task that took the next most time,

olc ..., with a 4 next to the fask that fook the least
= fime.

| Searching for the correct programming icon to
4 use

| Translating information from pseu-
1 docode/flowcharts into a B# program

| Reorganising and restructuring a B# program

| Playing around with the different programming
~ icons in B# without being sure of the re-
- sultipurpose of each

*| Please answer the following ques-

*| tions to the best of your ability by £

- marking the appropriate number (1, 2, F

= 3,4 50r6). ifyou are able to, please | || 5 e
 provide additional details for each |3 |5 § 2
 point. 23 %85
1. Ifind it easy to Ipcate and use any 112l 3 4l 5l6
= B# programming icon.

| If there are any constructs that are difficulf to use and/or |

 locate, please identify them.

2. The windows of B# that are depend- | 1/ 2] 3 [4[5[6

574

Applying the Cognitive Dimension Framework in Introductory Programming

ent upon each other are easily visble | | | |
and are always consistent. L

Please identify any windows of Bi that fall into this cate-
gory. Why is it necessary for these windows to be de-
pendent upon one another?

3. Ifind it easy to make changes to a
B# program. 11231456

if there are any things that are difficult to change in a
program, please identify them.

4. | can state a solution to a problem
reasonably briefly in B, 12 3)4/5/6

Is there anything specific that you think could be simpler?
How could i be simplified?

5. | 1find that it requires a lot of thinking
{o create a solution in B#. 112 31456

if there are any things in B# that require a lot of thought,
pleass identify them and describe why you find them dif-
ficult

8. |find that it is easy to make imitating
mistakes in BY. 112 3456

Describe the kind of imiating mistakes that B# allowed
you {o make.

7. | find that the way in which B# pro-
grams are created and displayed
closely matches the types of problems
that | must solve in WRA131.

Why?

8. B# programs are easy to follow and
understand.

Why?

8. If I make a change to a B# program,
the effect is always reflected in the |1)2 3 |4|5|6
parts that dependent on the change.

Describe the occasion(s) when this did not occur,

10. It is easy to stop at anytime during a
B# program creation and test my|1/2 3 |4|5/6
work so far,

Describe the times when this was not possible.

Charmain Cilliers, André Calitz & Jéan Greyling

11. B# encourages me to experiment

with a solufion.

How?

12. B# forces me io think ahead and
make certain decisions about a solu-
tion first. |]

How?

13. The different parts of B# that mean
similar things are clearly similar from
the way that they appear.

| Please identify anything which you consider to be similar

in B# and describe how you identified them as being

similar,

14. The arrangement of the icons in a |
B# program helps me to understand | 1|2/ 3 [4 5/ 6
the purpose of the program better. 3

Describe exactly how the arrangement of the lcons ina

B# programs affects your understanding of the program

| task.

= What task/activity do you use B# for?

- What, in your opinion, is the end product that B# produces? _____

= How do you inferact with B#?

- Can you think of any obvious ways that could improve the B# system?

12345&

_.
™3
[o%]

e
Lh
(=]

[

234,56

l

- Authors’ Contact Details

Charmain Cilliers, (Charmain.Cilliers@nmmu.ac.za)
* André Calitz, (Andre.Calitz@nmmu.ac.za)

~ Jéan Greyling (Jean.Greyling@nmmu.ac.za)

Department of Computer Science and Information Systems,

Nelson Mandela Metropolitan University, Port Elizabeth, South
. Africa

576

	alt_v12_n1b_2005_Page_199
	alt_v12_n1b_2005_Page_200
	alt_v12_n1b_2005_Page_201
	alt_v12_n1b_2005_Page_202
	alt_v12_n1b_2005_Page_203
	alt_v12_n1b_2005_Page_204
	alt_v12_n1b_2005_Page_205
	alt_v12_n1b_2005_Page_206
	alt_v12_n1b_2005_Page_207
	alt_v12_n1b_2005_Page_208
	alt_v12_n1b_2005_Page_209
	alt_v12_n1b_2005_Page_210
	alt_v12_n1b_2005_Page_211
	alt_v12_n1b_2005_Page_212
	alt_v12_n1b_2005_Page_213
	alt_v12_n1b_2005_Page_214
	alt_v12_n1b_2005_Page_215
	alt_v12_n1b_2005_Page_216
	alt_v12_n1b_2005_Page_217
	alt_v12_n1b_2005_Page_218
	alt_v12_n1b_2005_Page_219
	alt_v12_n1b_2005_Page_220
	alt_v12_n1b_2005_Page_221
	alt_v12_n1b_2005_Page_222
	alt_v12_n1b_2005_Page_223
	alt_v12_n1b_2005_Page_224
	alt_v12_n1b_2005_Page_225
	alt_v12_n1b_2005_Page_226
	alt_v12_n1b_2005_Page_227
	alt_v12_n1b_2005_Page_228
	alt_v12_n1b_2005_Page_229
	alt_v12_n1b_2005_Page_230
	alt_v12_n1b_2005_Page_231
	alt_v12_n1b_2005_Page_232

